動加速度の周波数解析による歩行評価

Frequency analysis of dynamic acceleration for gait assessment

学生氏名:黒瀧和寿1,楠天晴1,齊夏生2) 指導教員:齊藤亜由子1,研究協力者:森地振一郎3)

- 1) 工学院大学 先進工学部 機械理工学科
- 2) 工学院大学大学院 工学研究科 機械理工学専攻
- 3) 東京医科大学 小児科・思春期科学分野

キーワード: Abnormal gait, Dynamic acceleration, Frequency analysis, Gait assessment, Low pass filter

1. 緒言

歩行運動において,正常と異常を区別する閾値の設 定は非常に難しい問題だ.一般的に正常歩行とは健常 者の歩行運動が基準とされる.しかし、個人の身体特性 や,歩行状況によって歩行速度,歩幅にばらつきがある ため正常歩行の閾値を一義的に決定することは困難で ある.

近年では可搬性とユーザビリティの双方に優れた計測 方法として,小型・軽量な加速度センサを用いた歩行評 価が提案されている. 加速度の周波数解析による歩行評 価も数多く行われており、パワースペクトル比などが正常 と異常を区別すための定量的評価指標になり得ると示さ れている.しかし,加速度センサ出力には重力加速度が 含まれており、歩行によって生じる動加速度を評価する ためには、センサの傾斜角を考慮してセンサ出力から重 力加速度を除去する必要がある.

そこで本研究では,加速度センサ出力から重力加速 度を除去した動加速度を用いて歩行の周波数解析を行 い, 歩行評価を試みる.

2. 実験

歩行計測の参加者は成人健常男性1名(身長1.73m, 体重65kg)である. 歩行計測においては、9軸モーション センサ(スポーツセンシング社製, SS-WS1792)を左右下 腿部長さ方向中心位置と腰部(左右PSIの中心)に取り付 けた(図1). 下腿部に装着した9軸モーションセンサのセ ンサ座標系はX軸正方向が体の側面左方向, Y軸正方 向が下腿部前面方向, Z軸正方向が下腿部長さ下方向 である. 腰部に装着した9軸モーションセンサのセンサ座 標系はX軸正方向が体の側面左方向, Y軸正方向が体 幹前面方向, Z軸正方向が体幹長さ下方向である.

実験参加者は通常歩行,両脚をクロスさせる歩容であ るはさみ脚歩行を模倣した歩行(以下,はさみ脚歩行), 半身麻痺を想定し、体幹を回旋させることで足を前進さ せるぶん回し歩行を模倣した歩行(以下,ぶん回し歩行) を行った. 9軸モーションセンサのサンプリング周波数は 100Hzである.

3. 解析

センサ出力から重力加速度を除去するため、センサ姿 勢を逐次推定する.

はじめに, 重力加速度と地磁気センサから得られる磁 場を用いてX軸周りのロール角(φ), Y軸周りのピッチ角(

θ), Z軸周りのヨー角(ψ)の初期値を

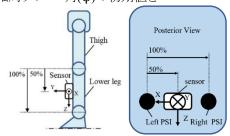


Fig.1 Sensor position

算出する. X軸周りのロール角(ϕ)とY軸周りのピッチ角(θ)の初期角度は加速度センサ出力を用いて式(1), (2)で 表すことができる.

$$\varphi_A = atan2 \frac{A_y}{A_z} \quad (-\pi < \varphi_A < \pi) \tag{1}$$

$$\theta_A = atan2 \frac{-A_x}{\sqrt{A_y^2 + A_z^2}} (-\pi < \theta_A < \pi)$$
 (2)

ここで、A、A、A、A、は3軸方向の加速度センサ出力である

ヨー角の初期値
$$\psi_m$$
は式(3)で表すことができる.
$$\psi_m = atan \frac{-im_y}{im_x} \left(-\pi < \psi_m < \pi \right) \tag{3}$$

動作中におけるロール角、ピッチ角、ヨー角は、オイ ラー角の微分値を式(4)に適用することによって算出する ことが可能である.

$$\begin{bmatrix} \psi_{t+1} \, \theta_{t+1} \, \varphi_{t+1} \end{bmatrix} = \int \left[\dot{\psi}_t \, \dot{\theta}_t \, \dot{\varphi}_t \right] dt + \left[\psi_t \, \theta_t \, \varphi_t \right]$$
(4)

ここで, ψ_{t+1} , θ_{t+1} , ϕ_{t+1} は時刻t+1におけるロール角 , ピッチ角, ヨー角であり, ψ_{t} , θ_{t} , φ_{t} は時刻tにおけるロー ル角、ピッチ角、ヨー角を示す.

センサの姿勢推定には拡張カルマンフィルタを用いる. 非線形離散時間システムを構成するため,式(4)を用いて 非線形状態方程式,式(3)と加速度センサ出力を用いて 非線形観測方程式を構築する.

さらに拡張カルマンフィルタにより推定したセンサの姿 勢を用いて,加速度センサ出力に含まれる静的加速度を 取り除く(式(5)).

$$A_{R} = A_{orig} - iA \tag{5}$$

ただし,

 $A_{orig} = \begin{bmatrix} A_x A_y A_z \end{bmatrix}$, $iA = \begin{bmatrix} -\sin\theta_i : g\cos\theta_i \sin\phi_i : g\cos\theta_i \cot\theta_i : g\cos\theta_i : g\cos\theta_i$

4. 結果

本研究においては、周波数解析結果のパワーピ Table1 Frequency analysis results (Normal gait)

	Dynamic ACC		Lowpass ACC	
	Frequency	Power	Frequency	Power
First peak	0.78125	0.376258	0.78125	0.607561
Second peak	2.34375	0.283468	2.34375	0.354101
Third peak	3.125	0.179331	7.03125	0.0744992

Table2 Frequency analysis results (Sissors gait)

	Dynamic ACC		Lowpass ACC	
	Frequency	Power	Frequency	Power
First peak	1.5625	1.34543	1.5625	1.30294
Second peak	0.78125	1.06826	3.125	0.565431
Third peak	2.34375	0.774632	6.25	0.137687

ーク値上位3つの周波数・パワーを抽出し、歩行の特徴について考察する. 通常歩行、はさみ足歩行における Sensor1 (右下腿部)のX軸動加速度、X軸加速度(ローパス処理のみ)の結果をそれぞれ表1,2に示す.

通常歩行においては、ローパス後の加速度、動加速 度共にすべての軸で倍成分や3倍成分などの整数倍の 周波数成分のみが確認できた。本結果については右下 腿部に装着したセンサ1、左下腿部に装着したセンサ2、 腰部に装着したセンサ3共に同様の傾向が得られている

模擬はさみ足歩行においては、ローパス後の加速度、動加速度共にX軸・Y軸で倍成分や3倍成分などの整数倍の周波数成分のみが確認できた.一方で、Z軸においては、ローパス後の加速度、動加速度共に整数倍の周波数成分ではない周波数でピークを確認した.

ローパス後の加速度、動加速度の差異に着目すると、 模擬はさみ足歩行のX軸加速度において、ローパス後の 加速度では第一ピークのパワーが通常歩行の2倍程度で あるのに対し、動加速度では通常歩行の4倍と大きく、動 加速度の結果はローパス後の加速度と比較して模擬はさ み足歩行における左右方向への下肢の振り出しの様子 が明瞭に現れており、歩行の判別が可能となっている.